Lecture 17 - MHD EQUILIbRIA

Sascha Kempf*

G135, University of Colorado, Boulder

Fall 2020

- Variation of single-fluid equilibria
- Static: $\frac{\partial}{\partial t}=0$ and $\overline{\mathbf{u}}=0$
- Now MHD equations are:

$$
\begin{aligned}
\mathbf{j} \times \mathbf{B} & =\nabla p \\
\nabla \times \mathbf{B} & =\mu_{0} \mathbf{j} \\
\nabla \cdot \mathbf{B} & =0
\end{aligned}
$$

- Because of

$$
\begin{aligned}
\mathbf{j} \cdot(\mathbf{j} \times \mathbf{B}) & =0=\mathbf{j} \cdot \nabla p \\
\mathbf{B} \cdot(\mathbf{j} \times \mathbf{B}) & =0=\mathbf{B} \cdot \nabla p,
\end{aligned}
$$

\mathbf{j} and \mathbf{B} are lying on surfaces of constant pressure.

1 FORCE-FREE EQUILIBRIA

- cylindrical geometry
- current in θ direction
- \mathbf{B} in z-direction

[^0]Combine with MHD equations:

$$
\begin{aligned}
\nabla \times \mathbf{B} & =\mu_{0} \mathbf{j} \quad \mid \mathbf{B} \times \\
\mathbf{B} \times(\nabla \times \mathbf{B}) & =\mu_{0} \mathbf{B} \times \mathbf{j} \\
\nabla\left(\frac{B^{2}}{2}\right)-(\mathbf{B} \cdot \nabla) \mathbf{B} & =-\mu_{0} \underbrace{\mathbf{j} \times \mathbf{B}}_{\nabla p} \\
\nabla\left(\frac{B^{2}}{2}\right)+\mu_{0} \nabla p & =(\mathbf{B} \cdot \nabla) \mathbf{B} \\
\nabla\left\{p+\frac{B^{2}}{2 \mu_{0}}\right\} & =\frac{1}{\mu_{0}}(\mathbf{B} \cdot \nabla) \mathbf{B}
\end{aligned}
$$

(Recall that we have found the same expression for the single-fluid case!). Now, for $\mathbf{B}=B_{z}(r) \hat{\mathbf{z}}$ this becomes

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left\{p+\frac{B_{z}^{2}}{2 \mu_{0}}\right\}=0
$$

and thus

$$
p+\frac{B_{z}^{2}}{2 \mu_{0}}=\text { constant }
$$

if $p($ edge $)=0$

$$
p(r)+\frac{B_{z}(r)^{2}}{2 \mu_{0}}=\underbrace{\frac{B_{0}^{2}}{2 \mu_{0}}}_{\text {applied field }}
$$

Note that $p_{\text {total }}=\mathrm{constant}$.

$$
\begin{aligned}
& 1.1 \quad \text { Plasma beta } \\
& \nabla\{\underbrace{p}_{(1)}+\underbrace{\frac{B_{z}^{2}}{2 \mu_{0}}}_{(2)}\}=0
\end{aligned}
$$

Relative importance of particle and magnetic pressures:

$$
\beta=\frac{(1)}{(2)}=\frac{2 \mu_{0} p}{B^{2}}
$$

1.2 Force-free plasmas

- Applicable for low β, i.e. $\mathbf{j} \times \mathbf{B}$ dominates ∇p
- MHD equation is then $\mathbf{j} \times \mathbf{B}=0$, i.e. $\mathbf{j} \| \mathbf{B}$
- Means that \mathbf{j} is field aligned
- Since $\mathbf{j} \| \mathbf{B}$, Ampere's law can be written as $\mu_{0} \mathbf{j}=\nabla \times \mathbf{B}=\alpha \mathbf{B}$, where the lapse field $\alpha(r)$ is a scalar function.

$$
\begin{aligned}
\nabla \times \mathbf{B} & =\alpha \mathbf{B} \quad \mid \mathbf{B} \times \\
\mathbf{B} \times(\nabla \times \mathbf{B}) & =\mathbf{B} \times \alpha \mathbf{B} \\
\mathbf{B} \times(\nabla \times \mathbf{B}) & =0
\end{aligned}
$$

- But also

$$
\begin{array}{r}
\nabla \times \mathbf{B}=\alpha \mathbf{B} \quad \mid \nabla . \\
\nabla \cdot(\nabla \times \mathbf{B})=\nabla \cdot(\alpha \mathbf{B})
\end{array}
$$

and recalling the vector identity $\nabla \cdot(\nabla \times \mathbf{f})=0$

$$
0=\nabla \cdot(\alpha \mathbf{B})=\alpha \underbrace{(\nabla \cdot \mathbf{B})}_{0}+\mathbf{B} \cdot \nabla \alpha
$$

$$
\mathbf{B} \cdot \nabla \alpha=0
$$

This implies that \mathbf{B} lies on constant- α surfaces!

- Constant- α surfaces? Possible topologies could be spheres, doughnuts, toroids, etc.
- Such a surface cannot be simple and closed:
- Assume that this would be the case and consider closed curve along a field line:

$$
\int_{C} \mathbf{B} \cdot d \mathbf{l} \neq 0=\int_{S}(\nabla \times \mathbf{B}) d \mathbf{A}=\int_{S} \alpha \mathbf{B} d \mathbf{A} \neq 0
$$

- Now distort surface S such that it lies on a constant- α surface
- Now pull α out of the integral because it is constant on such a surface

$$
\int_{C} \mathbf{B} \cdot d \mathbf{l}=\alpha \int_{S} \mathbf{B} d \mathbf{A} \neq 0
$$

- Contradiction to $\mathbf{B} \cdot \nabla \alpha=0$, so that our assumption of a constant- α surface is "simply closed" is wrong.
- Hopf's theorem shows that those surfaces must be toroidal (in simplest form)

[^0]: *sascha.kempf@colorado.edu

